

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION

 $x^2 + 3y^2 = 19z^2$

J.Shanthi¹, M.A. Gopalan²

¹Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India. email:shanthivishvaa@gmail.com

² Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India.

email: mayilgopalan@gmail.com

ABSTRACT:

The homogeneous ternary quadratic Diophantine equation represented by $x^2 + 3y^2 = 19z^2$ is studied for finding its non-zero distinct integer solutions. The formulae for generating sequence of integer solutions based on the given solution are exhibited.

Keywords: Homogeneous Ternary Quadratic, Integral solutions

INTRODUCTION

Ternary quadratic equations are rich in variety [1-4, 17-19]. For an extensive review of sizable literature and various problems, one may refer [5-16]. In this communication, we consider yet another interesting homogeneous ternary quadratic equation $x^2 + 3y^2 = 19z^2$ and obtain infinitely many non-trivial integral solutions. Also, the formulae for generating sequence of integer solutions based on the given solution are exhibited.

METHOD OF ANALYSIS:

Let x, y, z be any three non-zero distinct integers such that

$$x^2 + 3y^2 = 19z^2 \tag{1}$$

Introducing the linear transformations

$$z = X + 3T$$
, $y = X + 19T$, $x = 4P$ (2)

in (1), it leads to

$$P^2 + 57T^2 = X^2 \tag{3}$$

We present below different methods of solving (3) and thus, obtain different patterns of integral solutions to (1).

Method: 1

Observe that (3) is satisfied by

$$T = 2rs, P = 57r^2 - s^2, X = 57r^2 + s^2$$

In view of (2), the corresponding values of x, y and z satisfying (1) are given by

$$x = 4(57r^{2} - s^{2})$$

$$y = 57r^{2} + s^{2} + 38rs$$

$$z = 57r^{2} + s^{2} + 6rs$$

Method: 2

Write (3) as the system of double equations as shown in Table: 1 below:

Table: 1 System of double equations

System	1	2	3	4	5	6
X + P	T^2	$3T^2$	$19T^{2}$	$57T^{2}$	57T	19 <i>T</i>
X - P	57	19	3	1	Т	3 <i>T</i>

Solving each of the system of equations in Table: 1, the corresponding values of X, P and T are obtained. Substituting the values of X,P and T in (2), the respective values of x,y and z are determined. For simplicity and brevity, the integer solutions to (1) obtained through solving each of the above system of equations are exhibited.

System :1	System:2	System:3	
$x = 8k^2 + 8k - 112$	$x = 24k^2 + 24k - 32$	$x = 4(38k^2 + 38k + 8)$	
$y = 2k^2 + 40k + 48$	$y = 6k^2 + 44k + 30$	$y = 38k^2 + 76k + 30$	
$z = 2k^2 + 8k + 32$	$z = 6k^2 + 12k + 14$	$z = 38k^2 + 44k + 14$	

System :4	System:5	System:6
$x = 4(114k^2 + 114k + 28)$	x = 112k	x = 32k
$y = 114k^2 + 152k + 48$	y = 48k	y = 30k
$z = 114k^2 + 120k + 32$	z = 32k	z = 14k

Remark:

(3) may be written in the form of ratio as

$$\frac{X+P}{19T} = \frac{3T}{X-P} = \frac{\alpha}{\beta}, \beta \neq 0$$

Solving the above system of double equations for X,P & T and using (2),the integer solutions to (1) are given by

$$x = 4(19\alpha^2 - 3\beta^2)$$
, $y = 19\alpha^2 + 3\beta^2 + 38\alpha\beta$, $z = 19\alpha^2 + 3\beta^2 + 6\alpha\beta$

Also ,one may write (3) in the form of ratio as

$$\frac{X+P}{3T} = \frac{19T}{X-P} = \frac{\alpha}{\beta}, \beta \neq 0$$

In this case, the corresponding integer solutions to (1) are obtained as

$$x = 4(3\alpha^{2} - 19\beta^{2}) \quad y = 19\beta^{2} + 3\alpha^{2} + 38\alpha\beta \quad z = 3\alpha^{2} + 19\beta^{2} + 6\alpha\beta$$

Method: 3

(1) is written as

$$3y^2 = 19z^2 - x^2 \tag{4}$$

Assume

$$y = 19a^2 - b^2 \tag{5}$$

Also, 3 is written as

$$3 = \left(\sqrt{19} + 4\right)\left(\sqrt{19} - 4\right) \tag{6}$$

Substituting (5) and (6) in (4) and employing the factorization method, define

$$\sqrt{19}z + x = (\sqrt{19} + 4)(\sqrt{19}a + b)^2$$

On equating the rational and irrational parts, we have

$$x = 4(19a^{2} + b^{2}) + 38ab \quad , \qquad z = (19a^{2} + b^{2}) + 8ab \tag{7}$$

Thus (5) and (7) represent the non-zero distinct integer solutions to (1).

Note: 1

It is worth mentioning here that, in addition to (6), 3 may be represented as below:

$$3 = \frac{(2\sqrt{19} + 1)(2\sqrt{19} - 1)}{25}$$

Following the procedure presented as above ,a different set of integer solutions to (1) is obtained.

Method: 4

One may write (1) as

$$19z^2 - 3y^2 = x^2 * 1 \tag{8}$$

Assume

$$x = 19a^2 - 3b^2 \tag{9}$$

Write 1 as

$$1 = (2\sqrt{19} + 5\sqrt{3})(2\sqrt{19} - 5\sqrt{3}) \tag{10}$$

Substituting (10), (9) in (8) and employing the factorization method, define

$$\sqrt{19}z + \sqrt{3}y = (2\sqrt{19} + 5\sqrt{3})(\sqrt{19}a + \sqrt{3}b)^2$$

On equating the rational and irrational parts, we have

$$z = 2(19a^2 + 3b^2 + 15ab) , y = 5(19a^2 + 3b^2) + 76ab$$
(11)

Thus, (9) and (11) represent the non-zero distinct integer solutions to (1).

Note: 2

It is worth mentioning here that, in addition to (10), 1 may be represented as below:

(i)
$$1 = \frac{(\sqrt{19} + \sqrt{3})(\sqrt{19} - \sqrt{3})}{16}$$

(ii) $1 = \frac{(2\sqrt{19} + 3\sqrt{3})(2\sqrt{19} - 3\sqrt{3})}{49}$

Following the procedure presented as above, two more sets of integer solutions to (1) are obtained.

Generation of Solutions

Different formulas for generating sequence of integer solutions based on the given solution are presented below:

Let (x_0, y_0, z_0) be any given solution to (1)

Formula: 1

Let (x_1, y_1, z_1) given by

$$x_1 = x_0, \ y_1 = y_0 + 5h, \ z_1 = 2h - z_0$$
 (12)

be the 2^{nd} solution to (1). Using (12) in (1) and simplifying, one obtains

$$h = 30y_0 + 76z_0$$

In view of (12), the values of y_1 and z_1 are written in the matrix form as

$$(y_1, z_1)^t = M(y_0, z_0)^t$$

where

$$M = \begin{pmatrix} 151 & 380\\ 60 & 151 \end{pmatrix} \text{ and } t \text{ is the transpose}$$

The repetition of the above process leads to the n^{th} solutions y_n, z_n given by

$$(y_n, z_n)^t = M^n (y_0, z_0)^t$$

If α , β are the distinct eigenvalues of M, then

$$\alpha = 151 + 20\sqrt{57}, \beta = 151 - 20\sqrt{57}$$

We know that

$$M^{n} = \frac{a^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{(\beta - \alpha)} (M - \alpha I), I = 2 \times 2 \text{ Identity matrix}$$

Thus, the general formulas for integer solutions to (1) are given by

$$x_n = x_0$$

$$y_n = \left(\frac{\alpha^n + \beta^n}{2}\right) y_0 + 19 \left(\frac{\alpha^n - \beta^n}{2\sqrt{57}}\right) z_0$$

$$z_n = 3 \left(\frac{\alpha^n - \beta^n}{2\sqrt{57}}\right) y_0 + \left(\frac{\alpha^n + \beta^n}{2}\right) z_0$$

Formula: 2

Let (x_1, y_1, z_1) given by

$$x_1 = h - 2x_0, \ y_1 = h - 2y_0, \ z_1 = 2z_0 \tag{13}$$

be the 2^{nd} solution to (1). Using (13) in (1) and simplifying, one obtains

$$h = x_0 + 3y_0$$

In view of (13), the values of x_1 and y_1 are written in the matrix form as

$$(x_1, y_1)^t = M(x_0, y_0)^t$$

where

$$M = \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} \text{ and } t \text{ is the transpose}$$

The repetition of the above process leads to the n^{th} solutions x_n , y_n given by

$$(x_n, y_n)^t = M^n (x_o, y_0)^t$$

If α , β are the distinct eigenvalues of M, then

$$\alpha = 2, \beta = -2$$

Thus, the general formulas for integer solutions to (1) are given by

$$x_n = 2^{n-2} ((1+3(-1)^n) x_o + 3(1-(-1)^n) y_0)$$

$$y_n = 2^{n-2} (((1-(-1)^n) x_o + (3+(-1)^n) y_0)$$

$$z_n = 2^n z_o$$

Formula: 3

Let (x_1, y_1z_1) given by

$$x_1 = 3x_0 + 4h, \ y_1 = 3y_0, \quad z_1 = h - 3z_0 \tag{14}$$

be the 2^{nd} solution to (1). Using (14) in (1) and simplifying, one obtains

$$h = 8x_0 + 38z_0$$

In view of (14), the values of x_1 and z_1 are written in the matrix form as

$$(x_1, z_1)^t = M(x_0, z_0)^t$$

where

$$M = \begin{pmatrix} 35 & 152 \\ 8 & 35 \end{pmatrix} \text{ and } t \text{ is the transpose}$$

The repetition of the above process leads to the n^{th} solutions x_n, z_n given by

$$(\mathbf{x}_n, \mathbf{z}_n)^t = \mathbf{M}^n (\mathbf{x}_0, \mathbf{z}_0)^t$$

If α , β are the distinct eigen values of M, then

$$\alpha = 35 + 8\sqrt{19}, \ \beta = 35 - 8\sqrt{19}$$

Thus, the general formulas for integer solutions to (1) are given by

$$x_n = \left(\frac{\alpha^n + \beta^n}{2}\right) x_0 + \sqrt{19} \left[\frac{\alpha^n - \beta^n}{2}\right] z_0, y_n = 3^n y_0$$
$$z_n = \frac{1}{2\sqrt{19}} \left(\alpha^n - \beta^n\right) x_0 + \left(\frac{\alpha^n + \beta^n}{2}\right) z_0$$

Conclusion:

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic Diophantine equation $3y^2 = 19z^2 - x^2$ representing homogeneous cone. As there are varieties of cones, the readers may search for other forms of cones to obtain integer solutions for the corresponding cones.

References:

- [1] Bert Miller, "Nasty Numbers", The Mathematics Teacher, Vol-73, No.9, Pp.649, 1980.
- [2] Bhatia B.L and Supriya Mohanty, "Nasty Numbers and their Characterisation" Mathematical Education, Vol-II, No.1, Pp.34-37, July-September 1985.
- [3] Carmichael R.D., The theory of numbers and Diophantine Analysis, NewYork, Dover, 1959.
- [4] Dickson L.E., History of Theory of numbers, Vol.2: Diophantine Analysis, New York, Dover, 2005.
- [5] Gopalan M.A., Manju Somnath, and Vanitha M., Integral Solutions of $kxy + m(x + y) = z^2$, Acta Ciencia Indica, Vol 33, No. 4, Pp. 1287-1290, 2007.
- [6] Gopalan M.A., Manju Somanath and Sangeetha V., On the Ternary Quadratic Equation $5(x^2 + y^2) 9xy = 19z^2$, IJIRSET, Vol 2, Issue 6, Pp.2008-2010, June 2013.
- [7] Gopalan M.A., and Vijayashankar A., Integral points on the homogeneous cone $z^2 = 2x^2 + 8y^2$, IJIRSET, Vol 2(1), Pp.682-685, Jan 2013.
- [8] Gopalan M.A., Vidhyalakshmi S., and Geetha V., Lattice points on the homogeneous cone $z^2 = 10x^2 6y^2$, IJESRT, Vol 2(2), Pp.775-779, Feb 2013.
- [9] Gopalan M.A., Vidhyalakshmi S., and Premalatha E., On the Ternary quadratic Diophantine equation $x^2 + 3y^2 = 7z^2$, Diophantus.J.Math, 1(1), Pp.51-57, 2012.
- [10] Gopalan M.A., Vidhyalakshmi S., and Kavitha A., Integral points on the homogeneous cone $z^2 = 2x^2 7y^2$, Diophantus.J.Math, 1(2), Pp.127-136, 2012.
- [11] Gopalan M.A., and Sangeetha G., Observations on $y^2 = 3x^2 2z^2$, Antarctica J.Math., 9(4), Pp.359-362, 2012.
- [12] Gopalan M.A., Manju Somanath and Sangeetha V., Observations on the Ternary Quadratic Diophantine Equation $y^2 = 3x^2 + z^2$, Bessel J.Math., 2(2), Pp.101-105,2012.

- [13] Gopalan M.A., Vidhyalakshmi S., and Premalatha E., On the Ternary quadratic equation $x^2 + xy + y^2 = 12z^2$, Diophantus.J.Math, 1(2), Pp.69-76, 2012.
- [14] Gopalan M.A., Vidhyalakshmi S., and Premalatha E., On the homogeneous quadratic equation with three unknowns $x^2 xy + y^2 = (k^2 + 3)z^2$, Bulletin of Mathematics and Statistics Research, Vol 1(1), Pp.38-41, 2013.
- [15] Meena.K, Gopalan M.A., Vidhyalakshmi S., and Thiruniraiselvi N., Observations on the quadratic equation $x^2 + 9y^2 = 50z^2$, International Journal of Applied Research, Vol 1(2), Pp.51-53, 2015.
- [16] Anbuselvi R., and Shanmugavadivu S.A., On homogeneous Ternary quadratic Diophantine equation $z^2 = 45x^2 + y^2$, IJERA, 7(11), Pp.22-25, Nov 2017.
- [17] Mordell L.J., Diophantine Equations, Academic press, London, 1969.
- [18] Nigel,P.Smart, The Algorithmic Resolutions of Diophantine Equations, Cambridge University Press, London 1999.
- [19] Telang, S.G., Number Theory, Tata Mc Graw-hill publishing company, New Delhi, 1996