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ABSTRACT

This paper concerns with the problem of obtaining non-zero distinct integer solutions to the

non-homogeneous cubic equation with three unknowns given x® +y® + x+y =2z(2z* —a® +1) .A few

interesting relations among the solutions are presented .Also ,a formula for generating sequence of
integer solutions to the considered cubic equation based on its given solution is exhibited.
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INTRODUCTION

The cubic diophantine equations are rich in variety and offer an unlimited field for research
[1,2]. In particular, refer [3-22] for a few problems on cubic equation with 3 unknowns for obtaining

non-zero distinct integer solutions .This paper concerns with yet another non-homogeneous ternary
cubic diophantine equation given by x®+y® +x+y=2z(2z* —a®+1) for determining its non-zero

non- distinct integral solutions by employing the linear transformations. A few interesting relations
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among the solutions are presented. A general formula for generating sequence of integer solutions based
on its given solution is exhibited.

Method of analysis
The non-homogeneous ternary cubic equation to be solved is
X+ vy +x+y=2z2(22* —a® +1) (1)
Introduction of the linear transformations
X=U+V,y=u-V,z=U,u=v=0 (2)
in (1) leads to
u? =3v? +a? (3)

which is the well-known positive Pell equation .The general solution (v, ,,u,,,) to (3)

is given by
(94 (94
Vn+1 =Egn +E fn '
u,=af, +§a g,,.n=-101,...
where

fn :(2+\/§)n+1+(2_\/§)n+1 ’gn :(2+\/§)n+1_(2_\/§)n+1 1

In view of (2),the general solution (X,.,,Y,.;,Z,,;) to (1) is given by

X _3 f +%ag

n+l 2 n 6 n?

Ynua = la f, +£0¢ g,, | n=-101.... (4)
2 6

z,,=af +—ag,,

A few numerical examples are presented in Table:1 below:
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Table :1 Numerical examples

n Xn+1 yn+1 Zn+1
1| 3« a 2a
0| llx 3o T
1| 4l | 1lla 26
2
3

153a | 4la | 97«
57la | 153a | 362c

From the above Table:1,the following results are observed:

() The values of x and y are both even or odd according as « is even or odd .
(i)  The values of z are even when « is even and alternatively even & odd when « is odd

("I) Xn+l = yn+2

(IV) Xn+1 + Xn+3 = 4yn+3

(V) Zn+l + Zn+2 = 3Xn+1

(VI) Zn+3 + Zn+2 = 3yn+3

(V") yn+1 + Xn+2 = 4yn+2

(VIII) yn+3 + yn+2 = 22n+2

(IX) Zn+3 + 52n+l = 3(yn+3 + yn+l)

(X) Xn+2 + Xn+1 = yn+3 + yn+2
Each of the following expressions is a perfect square:

o a8z, —22,,; +20a)
o a(10z,,, —6X,,,, +20)

o a(18x,,,, —22,,, +2)

2n+

* (1022n+2 —6Y,0.5 + 2ar)

e ¢ (5Yani2 = Xoniz2 +20)

Each of the following expressions is a cubical integer:

2

* [5y3n+3 —Xgnig T 3(5yn+l - Xn+1)]
¢ ? [loz3n+3 6y3n+4 +3(102 6yn+2)]

[04
e o [18X3n+3 Zgns + 318X,y — 22n+3)]
[04

? [1023n+3 Xanig T 3(102n+1 - 6Xn+1)]
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° a’ [823n+3 —225,,, +3(82,,, — 22n+2)]

Employing the linear combinations between the solutions of (1), one obtains integer solutions to special
hyperbolas and parabolas :

lHlustration 1:

The pairs of integers

n+l? n+

(X !Y) :(4Zn+2 —-14z 8z 1 22n+2) 1(12Xn+1 _18Zn+1,102n+1 - 6Xn+1) '

(12 yn+2 _18Zn+1 1102n+1 - 6yn+2) 1(3Xn+l _gym—l '5yn+l - Xn+1)

satisfy the hyperbola 3Y? — X* =12a? correspondingly.
Hlustration 2:

The pairs of integers

(X,Y)=(4z,,,-14z ., 82,,., —22,,,, + 2a) ,(12X,,, —18z

(2y,,, —18z,,, .10z, ,; —6Y,.5 +2a) ,(3X,,1 = 9Y 11 OYoni2 — Xonso +200)
satisfy the hyperbola 3aY — X? =12« correspondingly.

1025, —6Xzn,, +20)

n+l? n+1,

Generation of Solutions:
The process of obtaining a formula for generating sequence of integer solutions based on the
given solution is presented below:

Let (u,,v, ) be any given solution to (3).
Let (u,,v, ) given by
u,=2h-u,, v, =h+v, 5)
be the 2" solution to (3). Using (5) in (3) and simplifying, one obtains
h =4u, +6v,
In view of (5), the values of u,and v, are written in the matrix form as

(ul’vl)t = M(uo’vo)t

where

7 12 .
M = 4 7 and t is the transpose
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The repetition of the above process leads to the n" solutionsu,,v,, given by

(un1vn )t =M n(l‘]O’VO)t (6)
Now , if p,qare the distinct eigen values of M, then
P=7+4J3 q=7-443

We know that

n_ P q" . _
M"=—"—(M-ql)+——(M —pl), | =2x2 Identity matrix
(p—q)( ) (q—p)( )

and in view of (6),one obtains the values of u,,v,. Employing (2) ,the values of

X,,Y,Z, satisfying (1) are given by

1 n n n_ n _ n_ n
xn—m[@\@(a +BM) 4@ - B)) % —2(a" ~ )Y

1 n n_ n_ n n_ n
yn—m[(zﬁ(a FB") = 4(a" — B7)) Y + 2a" — )% @)
2, =%[(a“ b BT +B@ - A7) % + (@ + B~ 3@ — A")Yo]

In the above system (7), X, =Uy, +V,,Y, =Uy —V,

CONCLUSION

In this paper, we have made an attempt to determine non-zero distinct integer solutions
to the non- homogeneous cubic equation with three unknowns given by

X} +y2+x+y=2z(2z* —a® +1).. As the cubic equations are rich in variety, one may search
for other forms of cubic equations with multiple variables to obtain their corresponding solutions
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