

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Real Time Vehicle Speed Estimation Techniques – A survey

Aditya Singh, Bhavya Pandey, Devashish Dana, Harsh Vikram Singh, Sandhya.N

Dayananda Sagar Academy of Technology and Management, Bangalore, India

ABSTRACT

Video and picture handling has been utilized for traffic observation, investigation and checking of traffic conditions in numerous urban areas and metropolitan territories. This paper focuses on present another way to deal with gauge the vehicles speed. In this examination, the caught traffic films are gathered with a fixed camera which is mounted on an expressway. The camera is aligned dependent on mathematical conditions that were upheld straightforwardly by utilizing references. Item following methods are then utilized on the live video that is being caught by the camera and the movement of the vehicle is being followed and shown on the screen. Utilizing this video and article following procedures, important information is being separated from the video and the qualities are then placed into the condition from which the speed isdetermined..

Keywords: Sugar, Ethanol, global demand, sugar production, COVID-19

1. Introduction

Individuals in their everyday lives experiences more issues as the populace is consistently expanding and street traffic turns out to be more blocked due to popularity and less degree of street limit and foundation. It is imperative to look for proficient answers for lessen these issues as they are a lot of common in the reality. Vehicle speed recognition is significant for noticing speed impediment law and it likewise shows traffic conditions. Customarily, vehicle speed discovery or reconnaissance was acquired utilizing radar innovation, especially, radar indicator and radarfirearm.

This strategy, with spatial conditions and supplies, gets the speed of a moving vehicle. Notwithstanding, this strategy actually has a few weaknesses, for example, the cosine blunder which occurs if the radar weapon isn't pointing towards the course of the approaching vehicle. Likewise, the expense of hardware is one of the significant reasons, and furthermore radio obstruction are two other powerful factors that cause blunders for speed location lastly, the way that radar sensor can follow just a single vehicle whenever is another impediment of thistechnique.

In this paper, we are preparing a survey report through researching on our project topics by reading through various IEEE paper and research papers that have implemented the related technique. This survey paper will compare those research papers on the basis of their techniques used, advantages, feasibility, accuracy and number of disadvantages. This survey report will give a basic idea about the techniques that have been used till now on the respective project and also about the advancement made till date in the domain.

2 Related Work

Volkan Cevher et.al [1] presented a method to determine a vehicle's speed via its acoustic drive-by sounds recorded at a microphone, by formulating the problem as a joint speed and acoustic pattern estimation problem. They achieve this estimation using a vector that profiles the directional variation of the vehicle acoustic pattern.

Parameters λv and λf of the vehicle profile vector can improve the confidence of the correspondence matches, also allowing minimal communication between a calibration microphone and a control microphone. However, given the difficulty of the correspondence problem, one should not expect perfect performance for all cases even with the vehicle profile vector. While determining the vehicle speed, they relied on the signal power calculations and

* Corresponding author. Bhavya Pandey

E-mail address: bhavy.pandey@gmail.com

argued that the signal frequency information (Doppler) was not useful when only a single microphone is used.

On the other hand, when an array of microphones is available, one can also obtain information from the phase of the received acoustic data across the array. In this case, they expect that the performance should improve more than what is gained from multiple independent amplitude observations. They envision that when multiple vehicles are present, the array can provide the acoustic beam steering necessary to remove the cocktail party effect on the ES components.

Shubhranshu Barnwal et.al [2] performed evaluation on data that has been done for simplistic cases, and this shows promising results. Estimates are within an acceptable range given that a passive sensor is being used and the approach is computationally inexpensive.

In a few cases the harmonics were not dominantly visible and pre-processing of audio to enhance spectral peaks is a viable option. For the controlled experiments reported in this paper, though, such pre-processing was not required. One can also notice clearly, when a gear shift takes place (both the up shift, and down shift), and state if the speed is increasing or decreasing. They were exploring approaches to combine Doppler Effect and the engine RPM–vehicle speed relation to track variable vehicle speeds.

Osman Ibrahim et.al [3] presented the alternative method for calculation of speed of moving objects. Instead of using expensive radars or sensors authors used Computer Vision techniques to implement the same logic and that too with same accuracy or even better. SDCS processes can be divided into four successive phases :-First phase is **Objects detection phase**, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction.

Second phase is **Objects tracking**, which consists of three successive operations, Object segmentation, Object labelling, and Object canter extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like:- Simple tracking, object has left the scene, object has entered the scene, object cross by another object, and object leaves and another one enters the scene.

Third phase is *Speed Calculation phase*, which is calculated from the number of frames consumed by the object to pass-by the scene.

Final/Fourth phase is Capturing Object's Picture phase, which captures the image of objects that violate the speed limits.

Arash Gholami Rad et.al [4] have presented video and image processing has been used for traffic surveillance, analysis and monitoring of traffic conditions in many cities and urban areas. Camera is used to detect speed and camera calibration plays a very vital piece for the process. Other information needed can be obtained by the software like fps megapixel etc. Second Step involves extraction of background (background refers to the stationary object in a video/image). After that foreground is extracted using CVS. It is preferred as it produces same results irrespective of the conditions. After this speed is detected using making a box around detected vehicle and considering the distance travelled by its centroid.

<u>G Chandan</u> et.al [5] have considered a small window on the image then scan the whole image, looking for corners. Shifting this small window in any direction would result in a large change in appearance, if that particular window happens to be located on a corner. Flat regions will have no change in any direction. If there's an edge, then there will be no major change along the edge direction. After the corner detection, tracking is being done for the detected corners. The pixel under consideration, and solves the basic optical flow equations for all the pixels in that neighbourhood, by the least squares criterion. The Lucas–Kanade method assumes that the displacement of the image contents between two nearby instants (frames) is small and approximately constant within a neighbourhood of the point p under consideration. Speed Estimation of Multiple Moving Objects from a Moving UAV Platform

S.S.S. Ranjit et al [6] have developed a vehicle speed detection algorithm is based on the vector-valued function and motion vector technique that estimates the velocity of moving vehicle. The motion vector technique is applied after the block extraction and subtraction is used to estimate the pixels changes among the two blocks to measure the speed of the moving vehicle. The vector-valued function is applied into the motion vector to demonstrate the vehicle speed detection algorithm for the video from surveillance cameras. The developed algorithm provides much more accurate results in different weather condition and light conditions.

Jozef Gerát et.al [7] have developed a system which can accurately detect speed of the vehicle irrespective of the weather conditions or light condition. Optical low method with Kalman filter tracking to solve the problem with overlays with static foreground objects and also improve speed detection. Foreground detection by Gaussian mixture model was combined with DBSCAN clustering to create more precise object representation better and much accurate speed detection at night and in different weather conditions

Debojit Biswas et.al [9] have implemented a speed detection system for multiple moving objects on the ground from a moving platform in the air. A detect-and-track approach is used for primary tracking of the objects. Faster R-CNN (region-based convolutional neural network) is applied to detect the objects, and a discriminative correlation filter with CSRT (channel and spatial reliability tracking) is used for tracking. Feature-based image alignment (FBIA) is done for each frame to get the proper object location. In addition, SSIM (structural similarity index measurement) is performed to check how similar the current frame is with respect to the object detection frame. This measurement is necessary because the platform is moving, and new objects may be captured in a new frame. We achieved a speed accuracy of 96.80% with our framework with respect to the real speed of the objects

Tarun Kumar and Dharmender Singh Kushwaha [10] have proposed an efficient and novel approach for the detection of moving vehicles as well as estimation of their speeds by using a single camera in daylight or properly illuminated environment.

3 Comparative Study

The table 1 suggests a comparative study that has been conducted amongst various research papers belonging to one common domain i.e. vehicle speed detection. The table therefore tells the key features, advantages and disadvantages of various approaches. One important observation that can be made from the table is that there are majorly two different ways of estimating speed of a moving vehicle. One, is based entirely on hardware, which includes various sensors for tracking the vehicle and calculating speed. Second, is based on the use of software for calculating the speed of the vehicle. Both approaches have their own advantages and disadvantages. One common advantage of hardware based estimation, as observed from the comparative study,

would be the accuracy with which it can detect the speeds, on the contrary, this approach is quite expensive as it involves the use of expensive sensors and other hardware components. This is overcome by the software approach, where speed of multiple moving vehicles can be calculated in a single frame with ease and is on the cheaper side as computer software used in this method is usually free of cost, however, this approach lacks the accuracy of the hardware based estimation techniques.

Table 1:	COMPARATIVE	STUDY		
TITLE	OBJECTIVE	TECHNOLOGIES USED	ADVANTAGES	DISADVANTAGES
[1] Vehicle speed	Authors aim to present a	Omni-directional	When an array of	More expensive due to
estimation using	method to estimate	microphones, video	microphones are used,	number of sensors used.
Acoustic Wave	vehicle's speed via its	cameras, Doppler's effect	performance improves	Needs improvement in its
patterns.	acoustic drive-by sounds	techniques, ES (Envelope	more than what is	performance, when the
	recorded at a	Shape) components.	gained from multiple	vehicle's CPA's are
	microphone, by		independent amplitude	relatively large.
	formulating it as a joint		observations.	
	speed & acoustic pattern			
	estimation problem.			
[2] Doppler based	Authors aim to develop	Passive audio microphones,	The estimated speed of	Too expensive.
Speed Estimation	a system for estimating a	knowledge of Doppler	vehicles varied by	This method will be
Passive Sensor	vehicle's speed using the	Shift, Spectrogram.	only by 0-10 kmph.	helpful if the vehicles
	phenomenon of Doppler		Vehicles moving at	move with constant speeds
	Shift.		lower gears are louder	(i.e., change in RPM
			and higher in	doesn't occur).
			frequency, thus	Error due to Doppler Shift
			displaying a larger	was seen higher in lower
			shift in harmonics	speeding vehicles.
			giving accurate results.	
	Authors aim to develop	High resolution cameras,	SDCS is a cheap	The camera required for
[3] Speed Detection	a software that is Easy-	Python, NumPy, OpenCV	alternative to Radar	video extraction should be
Camera System	to-handle and provides	and Computer Vision	system.	of high resolution.
(SDCS) using	nearly 100% accurate	techniques.	SDCS is considered as	For smooth running of the
Image Processing	results for speed	*	a good application for	software the system should
techniques on	estimation on moving		some difficult Image	have i5 processors with at
Video Streams.	vehicles.		processing algorithms	least 4GB RAM.
			and theories.	
			SDCS doesn't need	
			any professionals to	
			deal with it as it has a	
			simple interface and	
			good design.	
[4] Vehicle Speed	Authors simplified the	OpenCV and Image	Object detection and	Precision and accuracy are
detection in Video	techniques and aim to	Processing techniques in	tracking using	not fully correct.
Image Sequences	detect and track an	Python.	Software methods	Needs improved
using CVS method.	object in real-time using		resulting in an	background filtering
	OpenCV.		affordable system.	methods/algorithms.
			Ability to track	
			multiple objects at a	
			given time.	
			The system is not	
			affected by weather	
			and performs same in	
			every condition.	
[5] Real-time object	To detect and track an	Knowledge of Deep	A software based	Lacks the accuracy and
detection and	object in real-time using	Learning, OpenCV libraries	approach on Object	precision of hardware
tracking using Deep	Deep Learning and	and Image Processing	Detection and	based Object tracking

[
Learning and	OpenCV.	techniques in Python.	tracking, resulting in	devices.
OpenCV.			an affordable system.	
			Ability to track	
			multiple objects at a	
			given time.	
[6] Real-Time	Development of vehicle	The motion vector	Faster and needs less	Accuracy is less.
Vehicle Speed	speed detection	technique is applied after	resources.	
Detection	algorithm is based on the	the block extraction and		
Algorithm using	vector-valued function	subtraction is used to		
Motion Vector	and motion vector	estimate the pixels changes		
Technique	technique that estimates	among the two blocks to		
	the velocity of moving	measure the speed of the		
	vehicle.	moving vehicle. The vector-		
		valued function is applied		
		into the motion vector to		
		demonstrate the vehicle		
		speed detection algorithm		
		for the video from		
		surveillance cameras.		
[/] Vehicle Speed	Development of a	Optical low method with	Better and much	Time consuming and needs
Detection from	system which can	Kalman filter tracking to	accurate speed	lot of resources.
Camera Stream	accurately detect speed	solve the problem with	detection at night and	
Using Image	of the vehicle	overlays with static	in different weather	
Processing	irrespective of the	foreground objects and also	conditions.	
Methods	weather conditions or	improve speed detection.		
	light condition.	Foreground detection by		
		Gaussian mixture model		
		was combined with		
		orosta mora prasisa object		
		representation		
[8] Vehicle Speed	Speed detection of	Computer Vision and Image	Efficient object	Doesn't provide precise
detection using	vehicles using Image	Processing techniques in	detection and tracking	and accurate results
deen learning and	processing techniques on	Python's OpenCV	method based on a	and accurate results.
Image processing	Video streams in	Tymon's openev.	software	
techniques	OpenCV		Easy-to-handle and	
			economic way of	
			speed detection.	
			Can be also used in	
			preventing road	
			accidents.	
[9] Speed	Speed detection system	Faster R-CNN is applied to	Extremely fast object	Less accurate.
Estimation of	for multiple moving	detect the objects, and a	detection.	
Multiple Moving	objects on the ground	discriminative correlation		
Objects from a	from a moving platform	filter with CSRT is used for		
Moving UAV	in the air.	tracking. FBIA is done for		
Platform.		each frame to get the proper		
		object location. In addition,		
		SSIM is performed to check		
		how similar the current		
		frame is with respect to the		
		object detection frame.		
[10] An Efficient	Efficient and novel	Vehicle's tracking is based	Minimize the scope of	Accuracy of only 87-90%.
Approach for	approach for the	on the relative positions of	any false positive	
Detection and	detection of moving	the vehicle in consecutive	detection on both sides	
Speed Estimation	vehicles as well as	frames. This information	of road.	
of Moving	estimation of their	may be used in the		
Vehicles.	speeds by using a single	Automatic Number Plate	1	

camera in daylight or	Recognition (ANPR)	
properly illuminated	System for selection of	
environment.	those key frames where	
	speed limit violation occurs.	

4 CONCLUSION

This paper provides a detailed summary related to different vehicle speed estimation techniques. Some techniques were found useful while some were not optimal. Here we will discuss about the best technique which is the SDCS technique. There are three steps to realize such processing namely, background subtraction, object extraction and speed detection. In the first step the mean filter for background generation that was one of the effective ways for background extraction was used. In the second step, a novel algorithm which takes advantage of the two-colour based characteristics and combines them for object extraction is introduced. This approach is more robust against misdetections and the problem of the merging or splitting of vehicles and finally, in the third step the vehicle speed is determined. The approach used is not affected by weather changes. Vehicle extraction and speed detection had been implemented using the Python.

Also, SDCS system provides a software package specifically designed to manage a vehicle's traffic provides a number of benefits:

- SDCS is a cheap alternative system to the traditional radar system and the need for expensive sensors is also
- SDCS is considered as a good application for some difficult image processing algorithms and theories (Object Motion Detection, Shadow Removal, and Object Tracking).
- SDCS doesn't need professional persons to deal with it as it has a simple interface and good design

REFERENCES

[1] Volkan Cevher, Rama Chellappa and James H. McClellan, "Vehicle Speed Estimation using Acoustic Wave Patterns", IEEE Transactions on Signal Processing Volume: 57, Issue: 1, Jan. 2009

[2] Shubhranshu Barnwal, Rohit Barnwal, Rajesh Hegde, Rita Singh and Bhiksha Raj, "Doppler based Speed Estimation of Vehicles using Passive Sensor", 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), 15-19 July 2013

[3] Osman Ibrahim, Hazem ElGendy, and Ahmed M. ElShafee. "Speed Detection Camera System (SDCS) using Image Processing Techniques on Video Streams", January 2011 International Journal of Computer and Electrical Engineering

[4] Arash Gholami Rad, Abbas Dehghani and Mohammed Rehan Karim, "Vehicle Speed detection in Video Image sequences using CVS Method", December 2010 International Journal of Physical Sciences

[5] G Chandan; Ayush Jain; Harsh Jain; Mohana, Real-time object detection and tracking using Deep Learning and OpenCV, 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 11-12 July 2018

[6] S.S.S. Ranjit, S. A. Anas, S. K. Subramaniam, K. C. Lim, A. F. I.Fayeez. "Real-Time Vehicle Speed Detection Algorithm using Motion Vector Techniques", 2019 Global Conference for Advancement in Technology (GCAT)

[7] Jozef Gerat, Dominik Sopiak, Milos Oravec, Jarmila Pavlovicova. "Vehicle Speed Detection from Camera Stream Using Image Processing Methods", International Symposium ELMAR, 18-20 Sept. 2017

[8] G Chandan, Ayush Jain, Harsh Jain, Mohana. Real-time Object detection using Deep Learning and Image Processing, 2018 International Conference on Inventive Research in Computing Applications (ICIRCA)

[9] Debojit Biswas, Hongbo Su, Chengyi Wang and Aleksandar Stevanovic. Speed Estimation of Multiple Moving Objects of from a Moving UAV Platform, International journal of Geo-Information, 2019

[10] Tarun Kumar and Dharmender Singh Kushwaha "An Efficient Approach for Detection and Speed Estimation of Moving Vehicles", Procedia computer science, Volume 89, 2016, Pages 726-731.