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A B S T R A C T 

Software is testing automated methods to improve the consistency of software design 

model checking. Predicting software defects is the main focus of the engineering community. 

Many software developers maintain their own software libraries, which help predict software 

defects. Prediction algorithms are based on machine learning, data manipulation, perceptual 

prediction and empirical research. The research community still faces some challenges in how to 

build and there are many research opportunities. In this work, the Kernel Supervised Sub-Code 

Prediction (KSSP) The technique has been used to detect previous software failures during the 

testing process. This technology can help us reduce the cost of software projects by reducing 

software testing. The identification task can provide some practical guidelines for two software 

engineering researchers and practitioners to predict future software flaws. A brief overview of 

some popular KSSP methods is provided along with they are suitable for testing software. The 

Subclass Component Analysis (SCA) is subcategory indicators are set, it is close to predicting 

defects between projects. Our conclusion of this work is that it is possible to quickly transfer an 

understanding of defect prediction lessons, even if the project uses a different set of indicators. 
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1. Introduction 

Defects are errors in the software system that causes the system to behave correctly or 

produce unexpected results. Repairing defects typically consumes about 80% of the total budget 

of a software project. This method can significantly reduce costs if the defects are fixed early. 

Therefore, defect prediction models are typically used for priority quality improvement and 

defect avoidance efforts. Despite the rapid growth of software development, software has many 

flaws for a variety of reasons. In the software development process, software testing is the main 

stage for reducing software defects. If developers and testers can correctly predict software 

flaws, it can save money, time and energy. It is necessary to perform a comparative analysis of 

defect prediction of mining software based on the classification rules. It chose different 

classification algorithms for comparison and developed a scheme for this purpose. The 

assessment analyzes the predictive performance of the learning scheme for a particular dataset in 

the past of competition. 

 

 

 

Fig.1 Illustrated process of project defect analysis 

 

Code in a large code base contains errors and requires extensive testing and code review 

issues. On the one hand, code review is an effective way to find errors early in development. On 

the other hand, with modern code inspection tools, even if it takes the time of an expert 

programmer, they can use it effectively in other ways. The right amount of code review is 

balanced with effort. Otherwise, you will miss the wrong price to enter the review code. 

Identifying problem domains is a way to make code reviews more effective. 
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Building high quality software with a limited quality assurance budget is becoming more 

difficult. Various software prediction models are used these days to predict failures from 

software metrics. Software failure prediction, which is predicted to be a failure-prone module 

and allows limited resources to be allocated before verification and verification activities or 

software is released. At an early stage, accurate failure prediction is a better way to reduce 

testing effort. 

Such predictions can be used for test and debug optimization where resources, more 

resources, should be allocated to multiple defect-prone modules. Predicting project defects is a 

strategy. Trains belong to other project data generalization prediction models, and the models are 

used to predict trends in defects that are part of the project of interest. However, in the machine 

learning literature, many composite technologies have suggested a combination of multiple 

classification modes. 

Reusable component-oriented software infrastructure and integrated frameworks for 

reuse are the composition of these components, the components of which can provide specific 

functionality such as word processors and spreadsheets. It is the type of software component 

used in reuse-oriented software processing is web services, and service standards are used to 

develop these standards and can be used remotely. The daily use of existing solutions in the 

development of new systems is an important attribute of the discipline of all mature 

technologies. Software reuse is a development in various application areas such as 

telecommunications, factory automation, automotive, aero electronics and practices. Software 

engineering produces a number of technologies and methods that facilitate the development of 

complex software systems for software reuse. 

 

2. Related work 

In this [1], the author investigates the four most relevant software engineering activities, 

depending on the effectiveness of the tracking requirements. These refer to the requirements-

level impact analysis between requirements and source code. It has proposed some positive steps 

that may reduce the variance in experimental results [2]. First, it requires reporting protocols to 

improve the reproducibility of our experiments. Secondly, more joint research may help to 

overcome the problem of blindness, especially blind analysis, should become a daily practice 

problem compared with the unskilled application of technology. 
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Based on 42 major studies that meet our selection criteria, they jointly report 600 sets of 

empirical forecast results. By reverse engineering, common response variables, we randomly to 

study four model-building factors (classifiers, datasets, input metrics, and groups of researchers) 

to predict model performance. Effect ANOVA model was built relative contribution [3]. This 

article [4] is an application of Fuzzy Analytic Hierarchy Process (FAHP), a popular multi-criteria 

determination technique for assessing the performance of certain classifiers. Rather than relying 

on the choice of preferred measures rather than this evaluation framework, combine performance 

measurements with a wider spectrum to evaluate the performance of the classifier. The 

aggregation method can measure the correlation between the critical ALTER and the correlation 

with the number of measurements and defects [5]. To build a model that predicts defect levels or 

numbers, or to apply only sums or achieve similar performance, often to reach the closest best 

performance than both other survey aggregation methods. When combining the aggregation 

methods of all surveys. 

Improved subcategory discriminant analysis (SDA) methods have been proposed to 

improve the subcategory discriminant analysis (SDA) used to achieve equilibrium subcategories 

[6]. Cross-project prediction, semi-supervised transfer component analysis (SSTCA) methods are 

used to make the distribution of source and target data consistent, and because the SSTCA + 

ISDA prediction method has been proposed. In the new software network model [7], each node 

in the network can create coordinate obstacles that are more orderly than the network graph and 

assign a set of call information that reflects that function. The combination of different 

packaging methods includes a support vector machine (SVM) and a maximal correlation (MR) 

[8] filtering method to find significant indicators and an artificial neural network (ANN). The 

proposed method of injecting a filter score into the packaging selection process can guide the 

search process to effectively determine significant indicators. Such a cross-project semi-

supervised defect prediction (CSDP), in this case[9]. Supervision of some internal projects Semi-

finished defect prediction (WSDP) methods have been developed in recent years, but there is still 

room for improvement in prediction performance. 

In the analysis, software module bad label values, where software measurement 

parameters are thought to affect factors and independent variables, are thought of as the 

dependent variable [10]. In classification prediction, the false value of the good module is 

replaced with a negative value, and the true value of the bad module is replaced with a positive 
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value. This article proposes a framework for developing fuzzy logic-based software prediction 

models using different sets of software metrics [11]. Its goal is to provide a set of common 

indicators for software defect prediction. Introduced in this article to provide an easy-to-

understand prediction model and generalize software metrics for defect prediction. The results 

show [12] the ability of fuzzy logic to generate a transparent defect prediction model. It also 

evaluates software metric choices to find the most obvious set of metrics. This is because it uses 

the concept of [13] embedded in the stratification embedded in nearest neighbor (STr-NN) to 

generate the modified balance and training datasets. For this project, directly use the STr-NN 

method for defect prediction to reduce the difference in distribution between the source and 

target datasets. 

Based on SimASTToken2Vec, we will design a new unsupervised integration method to 

learn the representation of the meaning of these extracted token vectors. In the future, 

bidirectional long-term and short-term memory (BiLSTM) [14], neural networks will be used to 

learn semantic functions from automatically embedding token vectors. This dataset consists of 

10 large open source projects written in the Java programming language. These projects come 

from different fields of application [15] and have been widely used as experimental subjects in 

previous software defect prediction (SDP) research. 

Over the past few years, some cross-project defect prediction (CPDP) methods have been 

proposed to reduce the difference in data distribution between the source and target projects. 

Details of the currently proposed CPDP method can be found in recent meta-analyses and 

systematic literature reviews [16, 17]. The settings for these methods are consistent with the 

settings that have been best done in recent comparative studies of different CPDP methods. 

This method helps identify the need for immediate attention, so that reliable priority 

flaws in the software can be dealt with first [18], and the module can be improved more quickly. 

Our goal in this study is to improve the classification accuracy of data mining algorithms. One 

solution to this problem is the development of [19, 20] through standard guidelines for 

systematic data collection processes provided to open communities, thereby reducing data 

collection bias. This article presents a tool for demonstrating systematic data collection programs 

from defect prediction datasets in open source bug tracking and source code control warehouse 

software. 
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3. Implementation of the proposed Kernel Supervised Sub-Code Prediction   

Machine learning algorithms especially the Kernel Supervised Sub-Code Prediction 

method is suitable for adapting the data to the behavior of the target program based on 

(debugging) observations. In this software defect prediction problem, classification provides a 

subset of known datasets of training classes on which it is executed and unknown classes of 

datasets are tested against the model. Cross-validation is used to divide a dataset into 

complementary subsets. It validates the analysis of another subset of the test set, called the 

analysis of a subset of the running training set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Proposed Block Diagram of the KSSCP 

 

A Subclass Component Analysis (SCA) using in Penalty Gaussian Mixture Classifier 

(PGMC) approach to predict defects across projects even with code class metric sets. In this 

block diagram of proposed method Kernel Supervised Sub-Code Prediction shown in figure 2. It 

uses probabilities to express explicit modeling uncertainties that analyze and track multiple 

categories of system state. The Penalty Gaussian Mixture Classifier (PGMC) is an effective 

supervised learning classification algorithm used to classify N-dimensional datasets. The pattern 

in our SCA is marked by routine deficiencies in the transfer of knowledge classification. It 
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categorizes defects such as source and target data that are set between the target data set by the 

source, distribution and match code coming from the data set. The training data set, but used as 

the input of the class label, can be obtained in conjunction with a well-trained model. Finally, the 

test package is presented to the trained sample and compared with the output of the results. 

 

3.1 Feature selection using LASSO Norm Regularize (LNR) 

Overcomes the problem of high dimensional feature space, commonly used for feature 

extraction and feature selection. It improves classification accuracy by removing unnecessary 

and inappropriate features. The LASSO algorithm used to select the software feature extraction 

and selection. LASSO regression has the same multiple linear regression model. The ability of 

this LASSO is to handle any number of attributes without decreasing its parameter estimate to 

zero. The LASSO algorithm automatically chooses the relevant features and rejects the others. 

The optimal feature selection like Line count, Branch count, Derived Halstead in software 

dataset. 

Algorithm steps: 

Step 1: The input data consider  𝑥1, 𝑥2,𝑥3,𝑥4 … . .𝑥𝑛 , where X is the independent variable, y 

consider optimal features. 

𝑦 = 𝑓(𝑥,𝑘)      --- (1) 

Step 2: To estimate the output constant 𝑘, a series of 𝑛 measurements with different outputs will 

produce a set of data.  𝑥𝑖 ,𝑦𝑖  Where i = 1, 2, 3, ….n. 

Step 3: In this input data to extract relevant feature (S) 

𝑠 =  (𝑦𝑖 − 𝑘.𝑥𝑖)𝑖=1 𝑡𝑜  𝑛     --- (2) 

Step 4: If there is an error in the selection process denote ϸ this error to estimate. 

𝑦𝑖 = 𝑘. 𝑥𝑖 + ϸ𝑖      --- (3) 

Step 5: The least optimal feature estimate of the output constant, 𝑘, is given by  

𝑘 =  𝑥𝑖 .𝑦𝑖(𝑠𝑖)/ 𝑥𝑖
2

𝑖
𝑥 ,𝑦
𝑖=0     --- (4) 

The above generated least optimal features estimate is the combination obtained equation 2 and 

3. 

Step 6: The output constant k is the same value required by LASSO to get the same value as in 

equation (4).  
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To represent this simple scheme, all candidate feature sets are binary representations that 

are considered binary genes. Each feature also contains a fixed-length string in binary format that 

represents a particular subset of a given feature set. The performance of all selected feature 

subsets is calculated using the merit function and the classification results are also calculated. 

The optimal subset of features were given as the output of the best set of classification features 

that could be used to train a prediction system. 

 

3.2. Classifier using Subclass Component Analysis  

In this Subclass Component Analysis used Penalty Gaussian Mixture Classifier (PGMC) 

for classify the predictive subclasses in software defect analysis. The Penalty Gaussian Mixture 

Classifier is a supervised learning algorithm and mathematical model that can analyze data and 

recognize patterns. The classification process is divided into two stages, one is the training stage 

and the other is the testing stage. When the data is categorized during training, the labels 

assigned to the data during the test phase are provided as input. The accuracy of the classification 

depends on the efficiency of the training model. 

For a set of training samples, the ML estimation finds the model parameters which 

maximize the likelihood of the PGMC. Given a sequence of N training vectors 𝑥 =

 𝑥1,      𝑥2,      𝑥3,      𝑥𝑛 ,       the PGMC likelihood is written as in Equation 5 

𝑃  
𝑥

𝜆
 = 𝜋𝑖=0

𝑛 𝑃 𝑥𝑖|     𝜆    ----- (5) 

As this is a nonlinear function of λ, direct maximization is not possible. ML parameters 

can be estimated iteratively using the expectation – maximization algorithm. The EM algorithm 

begins with an initial model λ and estimates a new model 𝜆, 𝑠𝑢𝑐 𝑡𝑎𝑡 𝑃  
𝑥

𝜆
 ≥ 𝑃(𝑥|𝜆). The new 

model becomes the initial model for the next iteration. 

Mixture weight = 𝑝𝑖    =
1

𝑛
 𝑝 𝑗|𝑥𝑖,     λ 𝑛

𝑖=0     ---- (6) 

 

Algorithm steps 

Input: dataset predict variable, density g, velocity v, defect finding time t. 

Output: Defect classification result  

Feature software datasets (M 1-n) 

Determine (g, v, t);  
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For each i to n do 

For each i to n-1 do 

If M (g, v, t) not terminate then 

For every (M1-n), recheck  (𝑛(𝑖), 𝑛(𝑗))
𝑛

𝑖 ,𝑗
to follow (g, v, t) do 

If M (g, v, t) determined then 

 Build a model = f (g, v, t) 

End if 

End for 

End if 

Data set divide to two parts there are train (80%) and test (20%) M (I,j)  

Train dataTdata and Test dataVdata 

Train model with M (i; j) (80%) 

Validate model with M (i; j) (20%) 

If M (i; j) equal D successful then 

Determine prediction maximum likelihood parameters using equation 5. 

To apply the weight using a equation 6 and apply the Penalty optimization 

function to predict the defect classes. 

Else 

Clean and pre-process dataset (M1-n) 

Again 

End if 

End for 

End for 

End procedure 

This is a useful supervised learning classification algorithm that can be used to classify 

N-dimensional datasets. During the training phase, PGMC is designed for each type of data. In 

this PGMC must be configured to contain defective and non-defective data samples. There must 

be no interaction between different predictive subcategories PGMC. At the classification stage, 

unknown levels of data are given by the PGMC as an input penalty function for each class to 

optimize the classifier. The predicted class is associated with the maximum probability of PGMC 

and subclass component analysis. 
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4. Result and discussion  

Statistics provide a strong basic background for quantifying and assessing results. This 

section presents the results of a work that proposed a technique for predicting software defect 

analysis using machine learning. The table 1 show the simulation parameters of proposed method 

to used analysis the performance. In this proposed method, evaluate the following equations 7, 8, 

9, 10: Classification accuracy, Precision, Recall, F1 score and time complexity. 

Table 1 Simulation Parameters 

Parameters Value 

Tool Visual studio 

Dataset name  NASA MSP repository  

Number of data 1000 

 

 𝐶𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  𝑓𝑖𝑙𝑒𝑠  

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑖𝑙𝑒𝑠
∗ 100       ---- (7) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  ---- (8) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   ---- (9) 

 𝐹1 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎 𝑙𝑙
     ---- (10) 

The NASA dataset used to input data to our system it‟s a suitable for high data support 

and dataset are labeled and unlabeled classes. In this analysis of proposed Kernel Supervised 

Sub-Code Prediction (KSSP) method compare to existing method Support Conventional neural 

network (CNN), Defect prediction via attention-based recurrent neural network (DP-ARNN), 

Random Forest (RF) and Improved Subclass Discriminant Analysis(ISDA)method to analysis 

the performance. 

Table 2 Analysis of Proposed Method Prediction Performance 

Methods Classification Accuracy Precision  Recall  F1 score  

Random forest   0.669 0.75 0.79 0.694 

CNN 0.712 0.80 0.82 0.746 

ISDA 0.87 0.83 0.85 0.73 

KSSP 0.90 0.89 0.87 0.86 
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Table 2 shows a comparison of the existing and proposed method disease prediction 

performance. In this result, table 2 shows the classification accuracy, precision, recall, f1 score 

are analysis proposed method KSSP and existing methods SVM, Random forest, Bayesian 

classifier. 

 

Fig.3 Analysis’s Classification Accuracy 

 

 Our machine learning method evaluation result provides a higher performance of 

classification accuracy compared to other existing method its show in figure 3. The proposed 

KSSP method have a 90% classification and existing method Random forest  has 66%, CNN 

have 71%, and ISDA have 87% classification accuracy. 

 Time calculation parameter is an input of the number of predicted class based on the 

algorithm request parameter calculated using the database is listed, as follows is represented the 

execution time of each algorithm. 

QA= query analytics 

T= trust 

A= accuracy 

DA= Number of database function 

N=no of non-class function 

Time =  (𝑄𝐴 + 𝑇 + 𝐴)/ (𝐷𝐴 + 𝑁)   
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Fig.4 Analysis of Time Complexity 

 

In this result of time complexity taken number prediction iteration, the proposed method 

KSSP is 10.5sec classification time for 90 iteration; similarly, the existing method RF, CNN and 

ISDA provide an 21.2sec, 20.7sec, and 18.1sec of classification time for 90 iteration it 

comparison is shown in figure 5. 

 

Fig.5 Analysis of Precision, Recall, and F1 score 

 

The proposed KSSP method provides a 0.86% of F1 Score, 0.89% of precision, and 

0.87% of recall values. Similarly the existing method RF, CNN, and ISDA have 0.75%, 0.8%, 

and 0.83% of precision rate compare to proposed method. In this analysis of precision, recall, 

and f1 score of existing method and proposed method comparison is shown in figure 5. 
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5. Conclusion 

The ability to identify software defects early in development is important to reduce costs 

and improve the overall efficiency of the testing process. Most software system failures were 

found in some of their own components. To improve the efficiency and quality of software 

development, you can use the benefits of data mining and analysis to predict the large number of 

software developments in your collected defect data. In this proposed Kernel Supervised Sub-

Code Prediction (KSSP) method to analysis the software kernel class function. In this proposed 

method provide a more efficiency and defect prediction accuracy compare to others.  
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