
International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

* Corresponding Author Tel: 9994203662

 E-Mail Address : rukkhue@gmail.com

Kernel Supervised Sub-Code Prediction Method Using To Analysis

Software Subclass and Defect Prediction

V.RUCKMANI
a
, S.PRAKASAM

b

V.Ruckmani, Assistant Professor, Voorhees College, Anna Salai, Vellore – 1, Tamil Nadu, India

S.Prakasam, Associate Professor, SCSVMV University, Enathur, Kanchipuram, Tamil Nadu, India

A B S T R A C T

Software is testing automated methods to improve the consistency of software design

model checking. Predicting software defects is the main focus of the engineering community.

Many software developers maintain their own software libraries, which help predict software

defects. Prediction algorithms are based on machine learning, data manipulation, perceptual

prediction and empirical research. The research community still faces some challenges in how to

build and there are many research opportunities. In this work, the Kernel Supervised Sub-Code

Prediction (KSSP) The technique has been used to detect previous software failures during the

testing process. This technology can help us reduce the cost of software projects by reducing

software testing. The identification task can provide some practical guidelines for two software

engineering researchers and practitioners to predict future software flaws. A brief overview of

some popular KSSP methods is provided along with they are suitable for testing software. The

Subclass Component Analysis (SCA) is subcategory indicators are set, it is close to predicting

defects between projects. Our conclusion of this work is that it is possible to quickly transfer an

understanding of defect prediction lessons, even if the project uses a different set of indicators.

304 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

1. Introduction

Defects are errors in the software system that causes the system to behave correctly or

produce unexpected results. Repairing defects typically consumes about 80% of the total budget

of a software project. This method can significantly reduce costs if the defects are fixed early.

Therefore, defect prediction models are typically used for priority quality improvement and

defect avoidance efforts. Despite the rapid growth of software development, software has many

flaws for a variety of reasons. In the software development process, software testing is the main

stage for reducing software defects. If developers and testers can correctly predict software

flaws, it can save money, time and energy. It is necessary to perform a comparative analysis of

defect prediction of mining software based on the classification rules. It chose different

classification algorithms for comparison and developed a scheme for this purpose. The

assessment analyzes the predictive performance of the learning scheme for a particular dataset in

the past of competition.

Fig.1 Illustrated process of project defect analysis

Code in a large code base contains errors and requires extensive testing and code review

issues. On the one hand, code review is an effective way to find errors early in development. On

the other hand, with modern code inspection tools, even if it takes the time of an expert

programmer, they can use it effectively in other ways. The right amount of code review is

balanced with effort. Otherwise, you will miss the wrong price to enter the review code.

Identifying problem domains is a way to make code reviews more effective.

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 305

Building high quality software with a limited quality assurance budget is becoming more

difficult. Various software prediction models are used these days to predict failures from

software metrics. Software failure prediction, which is predicted to be a failure-prone module

and allows limited resources to be allocated before verification and verification activities or

software is released. At an early stage, accurate failure prediction is a better way to reduce

testing effort.

Such predictions can be used for test and debug optimization where resources, more

resources, should be allocated to multiple defect-prone modules. Predicting project defects is a

strategy. Trains belong to other project data generalization prediction models, and the models are

used to predict trends in defects that are part of the project of interest. However, in the machine

learning literature, many composite technologies have suggested a combination of multiple

classification modes.

Reusable component-oriented software infrastructure and integrated frameworks for

reuse are the composition of these components, the components of which can provide specific

functionality such as word processors and spreadsheets. It is the type of software component

used in reuse-oriented software processing is web services, and service standards are used to

develop these standards and can be used remotely. The daily use of existing solutions in the

development of new systems is an important attribute of the discipline of all mature

technologies. Software reuse is a development in various application areas such as

telecommunications, factory automation, automotive, aero electronics and practices. Software

engineering produces a number of technologies and methods that facilitate the development of

complex software systems for software reuse.

2. Related work

In this [1], the author investigates the four most relevant software engineering activities,

depending on the effectiveness of the tracking requirements. These refer to the requirements-

level impact analysis between requirements and source code. It has proposed some positive steps

that may reduce the variance in experimental results [2]. First, it requires reporting protocols to

improve the reproducibility of our experiments. Secondly, more joint research may help to

overcome the problem of blindness, especially blind analysis, should become a daily practice

problem compared with the unskilled application of technology.

306 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

Based on 42 major studies that meet our selection criteria, they jointly report 600 sets of

empirical forecast results. By reverse engineering, common response variables, we randomly to

study four model-building factors (classifiers, datasets, input metrics, and groups of researchers)

to predict model performance. Effect ANOVA model was built relative contribution [3]. This

article [4] is an application of Fuzzy Analytic Hierarchy Process (FAHP), a popular multi-criteria

determination technique for assessing the performance of certain classifiers. Rather than relying

on the choice of preferred measures rather than this evaluation framework, combine performance

measurements with a wider spectrum to evaluate the performance of the classifier. The

aggregation method can measure the correlation between the critical ALTER and the correlation

with the number of measurements and defects [5]. To build a model that predicts defect levels or

numbers, or to apply only sums or achieve similar performance, often to reach the closest best

performance than both other survey aggregation methods. When combining the aggregation

methods of all surveys.

Improved subcategory discriminant analysis (SDA) methods have been proposed to

improve the subcategory discriminant analysis (SDA) used to achieve equilibrium subcategories

[6]. Cross-project prediction, semi-supervised transfer component analysis (SSTCA) methods are

used to make the distribution of source and target data consistent, and because the SSTCA +

ISDA prediction method has been proposed. In the new software network model [7], each node

in the network can create coordinate obstacles that are more orderly than the network graph and

assign a set of call information that reflects that function. The combination of different

packaging methods includes a support vector machine (SVM) and a maximal correlation (MR)

[8] filtering method to find significant indicators and an artificial neural network (ANN). The

proposed method of injecting a filter score into the packaging selection process can guide the

search process to effectively determine significant indicators. Such a cross-project semi-

supervised defect prediction (CSDP), in this case[9]. Supervision of some internal projects Semi-

finished defect prediction (WSDP) methods have been developed in recent years, but there is still

room for improvement in prediction performance.

In the analysis, software module bad label values, where software measurement

parameters are thought to affect factors and independent variables, are thought of as the

dependent variable [10]. In classification prediction, the false value of the good module is

replaced with a negative value, and the true value of the bad module is replaced with a positive

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 307

value. This article proposes a framework for developing fuzzy logic-based software prediction

models using different sets of software metrics [11]. Its goal is to provide a set of common

indicators for software defect prediction. Introduced in this article to provide an easy-to-

understand prediction model and generalize software metrics for defect prediction. The results

show [12] the ability of fuzzy logic to generate a transparent defect prediction model. It also

evaluates software metric choices to find the most obvious set of metrics. This is because it uses

the concept of [13] embedded in the stratification embedded in nearest neighbor (STr-NN) to

generate the modified balance and training datasets. For this project, directly use the STr-NN

method for defect prediction to reduce the difference in distribution between the source and

target datasets.

Based on SimASTToken2Vec, we will design a new unsupervised integration method to

learn the representation of the meaning of these extracted token vectors. In the future,

bidirectional long-term and short-term memory (BiLSTM) [14], neural networks will be used to

learn semantic functions from automatically embedding token vectors. This dataset consists of

10 large open source projects written in the Java programming language. These projects come

from different fields of application [15] and have been widely used as experimental subjects in

previous software defect prediction (SDP) research.

Over the past few years, some cross-project defect prediction (CPDP) methods have been

proposed to reduce the difference in data distribution between the source and target projects.

Details of the currently proposed CPDP method can be found in recent meta-analyses and

systematic literature reviews [16, 17]. The settings for these methods are consistent with the

settings that have been best done in recent comparative studies of different CPDP methods.

This method helps identify the need for immediate attention, so that reliable priority

flaws in the software can be dealt with first [18], and the module can be improved more quickly.

Our goal in this study is to improve the classification accuracy of data mining algorithms. One

solution to this problem is the development of [19, 20] through standard guidelines for

systematic data collection processes provided to open communities, thereby reducing data

collection bias. This article presents a tool for demonstrating systematic data collection programs

from defect prediction datasets in open source bug tracking and source code control warehouse

software.

308 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

3. Implementation of the proposed Kernel Supervised Sub-Code Prediction

Machine learning algorithms especially the Kernel Supervised Sub-Code Prediction

method is suitable for adapting the data to the behavior of the target program based on

(debugging) observations. In this software defect prediction problem, classification provides a

subset of known datasets of training classes on which it is executed and unknown classes of

datasets are tested against the model. Cross-validation is used to divide a dataset into

complementary subsets. It validates the analysis of another subset of the test set, called the

analysis of a subset of the running training set.

Fig.2 Proposed Block Diagram of the KSSCP

A Subclass Component Analysis (SCA) using in Penalty Gaussian Mixture Classifier

(PGMC) approach to predict defects across projects even with code class metric sets. In this

block diagram of proposed method Kernel Supervised Sub-Code Prediction shown in figure 2. It

uses probabilities to express explicit modeling uncertainties that analyze and track multiple

categories of system state. The Penalty Gaussian Mixture Classifier (PGMC) is an effective

supervised learning classification algorithm used to classify N-dimensional datasets. The pattern

in our SCA is marked by routine deficiencies in the transfer of knowledge classification. It

Module analysis

Lasso norm

regularize

Kernel feature selection

Class matric Feature

Extraction

Software

database

Training module

Testing module

Built module

Penalty Gaussian

Mixture Classifier

Subclass

Component

Analysis

Result

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 309

categorizes defects such as source and target data that are set between the target data set by the

source, distribution and match code coming from the data set. The training data set, but used as

the input of the class label, can be obtained in conjunction with a well-trained model. Finally, the

test package is presented to the trained sample and compared with the output of the results.

3.1 Feature selection using LASSO Norm Regularize (LNR)

Overcomes the problem of high dimensional feature space, commonly used for feature

extraction and feature selection. It improves classification accuracy by removing unnecessary

and inappropriate features. The LASSO algorithm used to select the software feature extraction

and selection. LASSO regression has the same multiple linear regression model. The ability of

this LASSO is to handle any number of attributes without decreasing its parameter estimate to

zero. The LASSO algorithm automatically chooses the relevant features and rejects the others.

The optimal feature selection like Line count, Branch count, Derived Halstead in software

dataset.

Algorithm steps:

Step 1: The input data consider 𝑥1, 𝑥2,𝑥3,𝑥4 … . .𝑥𝑛 , where X is the independent variable, y

consider optimal features.

𝑦 = 𝑓(𝑥,𝑘) --- (1)

Step 2: To estimate the output constant 𝑘, a series of 𝑛 measurements with different outputs will

produce a set of data. 𝑥𝑖 ,𝑦𝑖 Where i = 1, 2, 3, ….n.

Step 3: In this input data to extract relevant feature (S)

𝑠 = (𝑦𝑖 − 𝑘.𝑥𝑖)𝑖=1 𝑡𝑜 𝑛 --- (2)

Step 4: If there is an error in the selection process denote ϸ this error to estimate.

𝑦𝑖 = 𝑘. 𝑥𝑖 + ϸ𝑖 --- (3)

Step 5: The least optimal feature estimate of the output constant, 𝑘, is given by

𝑘 = 𝑥𝑖 .𝑦𝑖(𝑠𝑖)/ 𝑥𝑖
2

𝑖
𝑥 ,𝑦
𝑖=0 --- (4)

The above generated least optimal features estimate is the combination obtained equation 2 and

3.

Step 6: The output constant k is the same value required by LASSO to get the same value as in

equation (4).

310 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

To represent this simple scheme, all candidate feature sets are binary representations that

are considered binary genes. Each feature also contains a fixed-length string in binary format that

represents a particular subset of a given feature set. The performance of all selected feature

subsets is calculated using the merit function and the classification results are also calculated.

The optimal subset of features were given as the output of the best set of classification features

that could be used to train a prediction system.

3.2. Classifier using Subclass Component Analysis

In this Subclass Component Analysis used Penalty Gaussian Mixture Classifier (PGMC)

for classify the predictive subclasses in software defect analysis. The Penalty Gaussian Mixture

Classifier is a supervised learning algorithm and mathematical model that can analyze data and

recognize patterns. The classification process is divided into two stages, one is the training stage

and the other is the testing stage. When the data is categorized during training, the labels

assigned to the data during the test phase are provided as input. The accuracy of the classification

depends on the efficiency of the training model.

For a set of training samples, the ML estimation finds the model parameters which

maximize the likelihood of the PGMC. Given a sequence of N training vectors 𝑥 =

 𝑥1, 𝑥2, 𝑥3, 𝑥𝑛 , the PGMC likelihood is written as in Equation 5

𝑃
𝑥

𝜆
 = 𝜋𝑖=0

𝑛 𝑃 𝑥𝑖| 𝜆 ----- (5)

As this is a nonlinear function of λ, direct maximization is not possible. ML parameters

can be estimated iteratively using the expectation – maximization algorithm. The EM algorithm

begins with an initial model λ and estimates a new model 𝜆, 𝑠𝑢𝑐 𝑡𝑎𝑡 𝑃
𝑥

𝜆
 ≥ 𝑃(𝑥|𝜆). The new

model becomes the initial model for the next iteration.

Mixture weight = 𝑝𝑖 =
1

𝑛
 𝑝 𝑗|𝑥𝑖, λ 𝑛

𝑖=0 ---- (6)

Algorithm steps

Input: dataset predict variable, density g, velocity v, defect finding time t.

Output: Defect classification result

Feature software datasets (M 1-n)

Determine (g, v, t);

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 311

For each i to n do

For each i to n-1 do

If M (g, v, t) not terminate then

For every (M1-n), recheck (𝑛(𝑖), 𝑛(𝑗))
𝑛

𝑖 ,𝑗
to follow (g, v, t) do

If M (g, v, t) determined then

 Build a model = f (g, v, t)

End if

End for

End if

Data set divide to two parts there are train (80%) and test (20%) M (I,j)

Train dataTdata and Test dataVdata

Train model with M (i; j) (80%)

Validate model with M (i; j) (20%)

If M (i; j) equal D successful then

Determine prediction maximum likelihood parameters using equation 5.

To apply the weight using a equation 6 and apply the Penalty optimization

function to predict the defect classes.

Else

Clean and pre-process dataset (M1-n)

Again

End if

End for

End for

End procedure

This is a useful supervised learning classification algorithm that can be used to classify

N-dimensional datasets. During the training phase, PGMC is designed for each type of data. In

this PGMC must be configured to contain defective and non-defective data samples. There must

be no interaction between different predictive subcategories PGMC. At the classification stage,

unknown levels of data are given by the PGMC as an input penalty function for each class to

optimize the classifier. The predicted class is associated with the maximum probability of PGMC

and subclass component analysis.

312 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

4. Result and discussion

Statistics provide a strong basic background for quantifying and assessing results. This

section presents the results of a work that proposed a technique for predicting software defect

analysis using machine learning. The table 1 show the simulation parameters of proposed method

to used analysis the performance. In this proposed method, evaluate the following equations 7, 8,

9, 10: Classification accuracy, Precision, Recall, F1 score and time complexity.

Table 1 Simulation Parameters

Parameters Value

Tool Visual studio

Dataset name NASA MSP repository

Number of data 1000

 𝐶𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑓𝑖𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒𝑠
∗ 100 ---- (7)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 ---- (8)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 ---- (9)

 𝐹1 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎 𝑙𝑙
 ---- (10)

The NASA dataset used to input data to our system it‟s a suitable for high data support

and dataset are labeled and unlabeled classes. In this analysis of proposed Kernel Supervised

Sub-Code Prediction (KSSP) method compare to existing method Support Conventional neural

network (CNN), Defect prediction via attention-based recurrent neural network (DP-ARNN),

Random Forest (RF) and Improved Subclass Discriminant Analysis(ISDA)method to analysis

the performance.

Table 2 Analysis of Proposed Method Prediction Performance

Methods Classification Accuracy Precision Recall F1 score

Random forest 0.669 0.75 0.79 0.694

CNN 0.712 0.80 0.82 0.746

ISDA 0.87 0.83 0.85 0.73

KSSP 0.90 0.89 0.87 0.86

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 313

Table 2 shows a comparison of the existing and proposed method disease prediction

performance. In this result, table 2 shows the classification accuracy, precision, recall, f1 score

are analysis proposed method KSSP and existing methods SVM, Random forest, Bayesian

classifier.

Fig.3 Analysis’s Classification Accuracy

 Our machine learning method evaluation result provides a higher performance of

classification accuracy compared to other existing method its show in figure 3. The proposed

KSSP method have a 90% classification and existing method Random forest has 66%, CNN

have 71%, and ISDA have 87% classification accuracy.

 Time calculation parameter is an input of the number of predicted class based on the

algorithm request parameter calculated using the database is listed, as follows is represented the

execution time of each algorithm.

QA= query analytics

T= trust

A= accuracy

DA= Number of database function

N=no of non-class function

Time = (𝑄𝐴 + 𝑇 + 𝐴)/ (𝐷𝐴 + 𝑁)

0 0.2 0.4 0.6 0.8 1

Classification accuracy in %

M
et

h
o

d
s

KSSP ISDA CNN Random forest

314 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

Fig.4 Analysis of Time Complexity

In this result of time complexity taken number prediction iteration, the proposed method

KSSP is 10.5sec classification time for 90 iteration; similarly, the existing method RF, CNN and

ISDA provide an 21.2sec, 20.7sec, and 18.1sec of classification time for 90 iteration it

comparison is shown in figure 5.

Fig.5 Analysis of Precision, Recall, and F1 score

The proposed KSSP method provides a 0.86% of F1 Score, 0.89% of precision, and

0.87% of recall values. Similarly the existing method RF, CNN, and ISDA have 0.75%, 0.8%,

and 0.83% of precision rate compare to proposed method. In this analysis of precision, recall,

and f1 score of existing method and proposed method comparison is shown in figure 5.

0

5

10

15

20

25

0 20 40 60 80 100

cl
as

si
fi

ca
ti

o
n

 t
im

e
 in

 s
ec

number of iteration

Analysis of Time Complexity

Random forest CNN ISDA KSSP

0

0.2

0.4

0.6

0.8

1

RF CNN ISDA KSSP

P
er

fo
rm

a
n

ce
 in

 %

Precision, Recall, F1 score

Precision Recall F1 score

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 315

5. Conclusion

The ability to identify software defects early in development is important to reduce costs

and improve the overall efficiency of the testing process. Most software system failures were

found in some of their own components. To improve the efficiency and quality of software

development, you can use the benefits of data mining and analysis to predict the large number of

software developments in your collected defect data. In this proposed Kernel Supervised Sub-

Code Prediction (KSSP) method to analysis the software kernel class function. In this proposed

method provide a more efficiency and defect prediction accuracy compare to others.

Reference

[1]. Rempel, P., & Mader, P. (2017). Preventing Defects: The Impact of Requirements

Traceability Completeness on Software Quality. IEEE Transactions on Software

Engineering, 43(8), 777–797.

[2]. Shepperd, M., Hall, T., & Bowes, D. (2017). Authors‟ Reply to “Comments on

„Researcher Bias: The Use of Machine Learning in Software Defect Prediction‟.” IEEE

Transactions on Software Engineering, 1–1.

[3]. Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher Bias: The Use of Machine

Learning in Software Defect Prediction. IEEE Transactions on Software Engineering,

40(6), 603–616.

[4]. Moh'd, Hussam & Dichter, Julius. (2019). Applying the FAHP to Improve the

Performance Evaluation Reliability of Software Defect Classifiers. IEEE Access. PP. 1-1.

10.1109/ACCESS.2019.2915964.

[5]. Zhang, F., Hassan, A. E., McIntosh, S., & Zou, Y. (2017). The Use of Summation to

Aggregate Software Metrics Hinders the Performance of Defect Prediction Models. IEEE

Transactions on Software Engineering, 43(5), 476–491.

[6]. Jing, X.-Y., Wu, F., Dong, X., & Xu, B. (2017). An Improved SDA Based Defect

Prediction Framework for Both Within-Project and Cross-Project Class-Imbalance

Problems. IEEE Transactions on Software Engineering, 43(4), 321–339.

[7]. Ai, J., Su, W., Zhang, S., & Yang, Y. (2019). A Software Network Model for Software

Structure and Faults Distribution Analysis. IEEE Transactions on Reliability, 1–15.

316 International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317

[8]. Huda, S., Alyahya, S., Mohsin Ali, M., Ahmad, S., Abawajy, J., Al-Dossari, H., &

Yearwood, J. (2018). A Framework for Software Defect Prediction and Metric Selection.

IEEE Access, 6, 2844–2858.

[9]. Wu, F., Jing, X.-Y., Sun, Y., Sun, J., Huang, L., Cui, F., & Sun, Y. (2018). Cross-Project

and Within-Project Semisupervised Software Defect Prediction: A Unified Approach.

IEEE Transactions on Reliability, 67(2), 581–597.

[10]. REN, J., & LIU, F. (2019). Predicting Software Defects Using Self-Organizing Data

Mining. IEEE Access, 1–1.

[11]. Al-Jamimi, H. A. (2016). Toward comprehensible software defect prediction models

using fuzzy logic. 2016 7th IEEE International Conference on Software Engineering and

Service Science (ICSESS). doi:10.1109/icsess.2016.7883031

[12]. Gong, L., Jiang, S., Bo, L., Jiang, L., & Qian, J. (2019). A Novel Class-Imbalance

Learning Approach for Both Within-Project and Cross-Project Defect Prediction. IEEE

Transactions on Reliability, 1–15.

[13]. H. Wan, G. Wu, C. Ming, H. Qing, W. Rui, and Y. Mengting, “Software defect

prediction using dictionary learning,” in Proc. Int. Conf. Softw. Eng. Knowl. Eng.,

Pittsburgh, PA, USA, Jul. 2017, pp. 335–340.

[14]. Chen, D., Chen, X., Li, H., Xie, J., & Mu, Y. (2019). DeepCPDP: Deep Learning Based

Cross-Project Defect Prediction. IEEE Access, 7, 184832–184848.

[15]. X. Chen, D. Zhang, Z.-Q. Cui, Q. Gu, and X.-L. Ju, „„Dp-share: Privacypreserving

software defect prediction model sharing through differential privacy,‟‟ J. Comput. Sci.

Technol., vol. 34, no. 5, pp. 1020–1038, 2019.

[16]. S. Hosseini, B. Turhan, and D. Gunarathna, „„A systematic literature review and meta-

analysis on cross project defect prediction,‟‟ IEEE Trans. Softw. Eng., vol. 45, no. 2, pp.

111–147, Feb. 2019.

[17]. S. Herbold, A. Trautsch, and J. Grabowski, „„A comparative study to benchmark cross-

project defect prediction approaches,‟‟ IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 811–

833, Sep. 2018.

[18]. K.PUNITHA, Dr. S. CHITRA, Software Defect Prediction Using Software Metrics - A

survey, IEEE 2013, pg.no: 555 – 558.

International Journal of Research Publication and Reviews Vol (2) Issue (6) (2021) Page 303-317 317

[19]. Goran Mauˇsa, Tihana Galinac Grbac, Bojana Dalbelo, Software Defect Prediction with

Bug-Code Analyzer - a Data Collection Tool Demo, IEEE 2015, pg.no: 1-2.

[20]. Ke Liang, Juan Guo and Jinghua Wang, On-Board Software Maintenance for Manned

Spacecraft, IEEE 2014, pg.no: 235 – 239.

